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Abstract. We present a theory of Hamiltonian superoperators associated with a Lie
superalgebra and its modules. By using the free fermionic fields from physics, we establish
a super version of the formal variational calculus introduced by Gel’fand and Dikii. Moreover,
we prove that a super skew-symmetric matrix differential operator in our super formal variationat
calculus is a Hamiltonian operator if and only if its Schouten—Nijenhuis super-bracket is zero,
when the characteristic of the base field is not two. Some interesting examples of Hamiltonian
superoperators are also given.

1. Introduction

The ‘formalization method’ has been proved to be very powerful in many mathematical
fields. Formal variational calculus was introduced by Gel'fand and Dikii [GDil-2] in
studying Hamiltonian systems related to certain nonlinear partial differential equattons, such
as the KdV equations. Invoking the variational derivatives, they found certain interesting
Poisson structures. Moreover, Gel’fand and Dorfman [GDo] found more connections
between Hamiltonian operators and certain algebraic structures. Balinskii and Novikov [BN]
studied similar Poisson structures from another point of view. One of the algebraic structures
appeared in [GDo] and [BN], which was called a ‘Novikov algebra’ by Osborn, was proved
in [O1-3] to be closely related to rank-one Witt Lie algebras under certain coanditions. One
of the other structures in [GDo] was proved [X2] by this author to be equivalent to an
associative algebra with a derivation under the unitary condition.

‘We observe that the formal variational calculus introduced by Gel’ fand and Dikii [GDil-
2} can be rewritten in terms of free bosonic fields in physics. From an algebraic point
of view. there should exist a formal variational calculus associated with free fermionic
fields in physics. Our main purpose in this paper is to intreduce a theory of Hamiltonian
superoperators analogous to that given in [GDil-2,GDo}l. In fact, the calculus of
Grassmanntan variables exists in quantum many-particle systems (cf [NO], for example).
Super-manifolds have been studied both by mathematicians and physicists for many years.
In this sense, our study on Hamiltonian superoperators is natural. We also believe that the
results in this paper could be useful for ‘super-infegrable systems’ and ‘super-symplectic
geometry.’

Throughout this paper, we denote by F a field and denote by Z the ring of integers. All
the vector spaces are over F.
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1682 Xiaoping Xu

Let L be a Lie algebra and let M be an L-module. For O < ¢ € Z, a g-form
w: Li=Lx--xL—= M is askew-symmetric multilinear map. We denote the set of g-
forms by ¢?(L, M) We take ¢®(L, M) = M. The differential d : ¢7(L, M) — 9t I(L, M)
is defined by

g+1
doa, ..., a1} = )_(=aw(@r,.... &, ....a00)
i=1

+Z(—l)i+fw([a;,a,-],a;, R I 15 conrfyst) (LD

i<j

for q; € L, where ‘a;" means that g; is omitted. A g-form « is called closed if dew = 0.
Let Q be a subspace of ¢!(L, M) satisfying dM C 2. Let H : 2 — L be a linear
operator {map) satisfying the skew-symmetry

E1(HE) = —&(HE) for &, & € Q. (1.2)
Moreover, we define wy € c2(H(52), M) by
wy (@, a2) = &(ar) for a1, a2 = H& € H(£2). (1.3)

Note that (1.3) is well defined because of (1.2). The operator H is called Hamiltonian if
H(S2) forms a subalgebra of L and dewy = 0.

In the formal variational calculus introduced by Gel'fand and Dikii [GDil-2], one starts
with the algebra A of polynomials of symbols {uf') 10£ieZ,!e ]}, where I is an index
set. ‘Differentiation with respect to x" is defined by the operator

ZZ (!-Z—”a (l) (1‘4)

1e] =0
The partial variational derivatives §/8u;: A — A are defined by
5 &0 i

3—"”=i=o (_;_x) 5% lel (1.5)
Denote §/8# = {6/8u; |1 € I'}. Then

o 2 <o (16)
Set

A = AJ(d/dx(A). (1.7}
The elements of A are called integrals. Note that

[(du/dx)v]” = —[u(dv/dx)]™ for u,v € A. 1.8)
Now let

L={0eDerA|[d,d/dx] =0} (1.9)
Then L is a Lie subalgebra of Der A. We define the action of L on Aby

dit = (Bu)~ fordaelLl,ucA. (1.10)

The space A becomes an L-module. Some Hamiltonian operators associated with (L, M)
have been shown to be connected with certain very interesting nonlinear partial differential
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equations (cf [GDi1-2,GDo]). We observe that A can be viewed as a Fock space of the
free bosonic fields
ST AL PPN NIL I SR

uz(Z)—‘Zﬂ;({_{_l)!z +i_0(z+ Wi+ )-mz € (L11)
which are viewed as “operator-valued functions’ (cf [FLM], for example). In this way, the
operator d/dx coincides with the Virasoro operator L(—1) (cf [FLM], for example). We
shall study in this paper the Hamiltonian operators associated with the free fermionic fields.
The paper is organized as follows,

In section 2, we introduce a general theory of Hamiltonian superoperators associated
with a coloured Lie superalgebra and its modules. The super formal variational calculus is
introduced in section 3. In section 4, we find the conditions of certain matrix differential
operators to be Hamiltonian operators. Finally in section 5, we present some examples of
Hamiltonian superoperators.

2. Closed 2-forms

In this section, we shall define ‘closed g-forms’ for a coloured Lie superalgebra and its
modules. With a fixed closed 2-form, we connect a new Lie algebraic structure. Moreover,
we set up the basic machinery for Hamiltonian superoperators.

Let I' be an abelian group. Let #(-,-) : I' x I' = F* =T \ {0} be a map satisfying
P+ 8,7} =0 y)0(B,¥) He, B) = 0B, )™ fore, B, y el (2.1

A coloured Lie superalgebra (L, T.%,[-,-]} is a I'"-graded algebra L = EB“EJ« Ly with the
operation [-, -] satisfying the super skew-symmetry

[xli x2] = —'ﬂ{av ﬁ)[xZ! X]} (2'2)
and the Jacobi identity
[x1, (%2, X3]) + O, B + ¥I[x2, [x3, i 1 4+ o + B, w3, (%1, x2]] = 0 (2.3)

fore, B,y €5 x1 € Ly, x2 € Lg,x3 € L. A representation of (L,T",9,[-, -]} is a map
p: L — EndpM for some vector space M over I such that

p([xy, x2]) = p(x1)pxz) — B e, Blplxz)o(x)) for x; € Ly, x3 € Lg. 2.4)
We simply denote
xu = p(xu forxeL ueM (2.5)

and call M an L-module.
A q-form of L with values in M is a multi-linearmap w: LY=L »x---x L — M for
which

W(X], X2 o0y Xg) = =0 (e, Do (X1, ..., Xy, Xis g, Xg, Xpg2a .., Xg)  (2.6)
for x; € L. xj € Ly, %141 € Lg. We denote by ¢9(L, M) the set of g-forms. Moreover, we
define a differential d : ¢¥(L, M) — ¢7t!(L, M) by

g+t
AW (X1, X2, .0y Xguel) = Z("'DH-]T?(Q] +oe e, L K Xggr)

=1
D DB 4o @) S+ 0o, )
i<j
xw([xf,xj],xl,...,x",-,...,ij,...,xq.,.]) (27)
forwec (L M).x;ely,l=1,...,9+1. Ag-form w is called closed if dw = 0.
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Proposition 2.1, The differential d satisfies d? =0.
Proof Forwe (L, M), %1 € Ly, ... Xg42 € Lo We have
d2o(x), 000, Xge2)
g2
= =D+ aimn @dxdol o e )

i=l

+ Z(—l)f’”z?(a: + oot 01, )

J=d
X oy + -+ &+ ooy, D@k X X a e Ky ey By Xgg2)

= SN + ey )P+ e, )

j=i
XAGE(XYy oy Xy o X Xgg2)

+ 3D B e 4 e, )Pl F ek e 0y, )

i<
X.’ij,'w(xl,,. caXis ey Xfs ...,Xq+2)

+ Z (=D oy 4 - oo, o) (e s g, @)

Jel<t
X0y + -+ &+ T oo, o)
Xx;w({x,,xg],xl,,.,,x"j, ...,f;,... ,x',-,. ..,.xq+2)

+ Z (=1 (o + - o, @) Bl + o o oy)

Ji=l
x®(oy +ooo @+ H &+ E- )
><x,-w([xj,.x;],.x1,...,ij,.,,,f,-,..,,J?;,...,xq_;_g)

+ Z (=D (e + o aio, a)P (g e F e e )

i< jl
x & (o) +...+&i+...+&j+.,.+ai_!'a£)
xx;w([x_,-,x;],xl,...,i,-,...,ff,...,)‘fg,....xq+2)

3R g @) o & e @)
J<l

x[xj, x;]w(x;,...,fj,...,};, ..,,xq+2)

+ 3 (D)@ o )Pl Gy e )

Jal<i

xdory + v--+ad,-_],a,)x,-w([,xj,x;],x;,.,.,Ej,...,ig.... yEiyoey Xgaa)
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-+ Z (__])i'-l-'j-l-l'-l-lﬁ(ml + ooy, aj)[?(a] 4+ .. +&j + ey, &)

Jer<l
XO{o A o+ gy, ) ey, o)

xx,-w([x_;,x;],x;, ...,sz, ...,.77?,‘, ....j&"[,...,xq+2)

+ 3Dy ey @) o e )

P<j=l
xB oy + -+ a1, o)y + o, o)

xx,-w([xj,xg],xl, ceer X ,x"j,...,};, ...,xg+2)

+ E (= 4 e, @) o o & e o, o)

Jal<
XOoty 4o 0+ G )
Xw([[xj,xg],x,-],xl,...,va;, ---,i[,--.,fi,...,xq.;.g)

YD Sy e, e Gy G, @)

Ji<i
Xy 4G e b oy, o)
xw([[xj!xf]sxi]’xls '--1-i'j, ---,xvi,v-.,i[, ...,xq+2)

+ Z (1S + - oL )l F o & g, )

i<j«<l
XP (o + -+ o, )
xw(l[xjvxl]rerxl" "','if! '--;ij?‘-wih --"xq+2)

+ Z (_I)i+j+s+t

Felesar
XO(ety ooy, )P bR & ey, o)

x(oy + o, 0P (e + o d o F oy, )

xw([x.s‘s-x.f]![xj’-x!],xh e ,ij, ---;-i[, ...,i_.;, --.,.i';, "'1xq+2)
+ E (_1)1'+_i+.\‘+f
sr f =l

x®(oy + -+ oy, o) + ooy A+ Fogag, ap)
XPoy 4ot oo @) o + o F G b O, )

x ey + oy, o + o)

xoxs, %1, x5, Xl X1, oo Xy oo Ky X X Xga)

+ Z (_ 1)i+j+s+f'—|

Jss<i<t
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xP(o + o0+ oy, o)B o -
Xy oot oy ) o + -

xw([xs, %1 [x, Xl X0 o K o

4 Z (___ l)f+j+s+2+]

s<jat<l

xBoy + - gy, o) PHey + -

xPoeg + -0+ ooy, o) Poy e

X l?(aj + oy, oy (o, o)

X&J([x;,x;], {xjux[]vxls . '-1}.\": T

+ Z (_1):'+f+s+t

Jeget<l

xey - Fojo, o)+ -
oy o ey, o) ey + -

xe(lxs, 6], [x;, x1) x1, .. Ko oo

+ Z (_l)i-i-j-l-s-}-f

§< j=d =t

X + o ajag, @) e + e

XB oy + <0+ oy, o) P oy + -

+& e, )
+ &+t op, @) ey, o)

,x,,...,x;,...,x,,,..,xq+2)

&g, o)

+&5+---+0[;_1,Gf;)

,35_,‘,...,sz,.--,xz.....xq.;.z)

+&+ oo, )

. +&s + ooy, a) oy, o + o)

I RPN PRRTIS TR

&+ e o)

* +&: +et a:—l,al)a(aj —+ oy, O‘:)

xw([.x;,x:],{xi,xd,x], "‘s'E.F! "'!ija--rvfh---yxuh‘ll’xq-l-Z) (2'8)

which is equal to 2ero because of the following: the sum of the first two summations and
the sixth is zero by (2.2); the sum of the third summation and the seventh is zero; the sum of
the fourth summation and the eighth is zero; the sum of the fifth summation and the nineth
is zero; the sum of the tenth to twelfth is zero by (2.3); the sum of the thirteenth summation
and fourteenth, the sum of the fifteenth and sixteenth and the sum of the seventeenth and
eighteenth are zero by (2.2). |

Let @ € c2(L, M). We define

He =f{x,mye Ly x M]w(y,x)=ymforye L} ‘H=Z'H,,CL x M. (2.9)

ael

Now we suppose that o is closed. Then for (x;,m;} € H,,, { =1, 2,3, we have

dw(x, x2, x3) = x1@(xz, x3) — F{ey, ax)rzw (x1, x3) + o + az, as)xsw(x), x2)
—w([x1, x2], x3) — B{or, @3 + a3)w([xs, x3], X3} + F{ea, az)ew([x1, x3], x2)
= — (o2, a3)xrxamy + P, &2 + a3)xxsm + $(e + az, o3)x30(x;, X2)

—w([x1, X2], x3) — Hevr, o + 3)}[xz, x3]my + Hea, aa)xg, x31ma
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= B + o2, 23)x3w(x1, x2) — w([x1, x2], ¥3)
oo, 00+ aly)d g, az)xsxomy — Ho, a3) (e, as)xsximy
= 3 (on + oz, or3)x3w (X, X2} — w([;] . X2], X3)
+3 e + o, w30 (g, ) x3w (X2, x1) — By + g, a3)x3ew(xy, x2)
= —w(lx, x2], x3) — He + o2, @3)x300(x1, X2). (2.10}
Thus we have
w(x3, [x1, x21) = ~F a3, o + c2)o([x1, x2], x3) = x3w (%1, X2) (2.11)

by dw = 0. Hence ([x1, x2], w(x1, x2)) € ‘H. Therefore, we can define an operation [-, -]
on H by

[(x1, m1), Gez, m2)] = (e, x2], 0 (x1, x2}) = (fxy, xal, (x1ma — Son, 02)xamy)/2)
(2.12)

for (x;, my) € Hy,.

Theorem 2.2. For a closed 2-form w, the family (H, T, {-, ]) forms a celoured Lie
superalgebra.

Proof. The super skew-symmetry follows by (2.12). For (x;.m;) € H,,, i = 1,2,3, we
have

[(x1. ma), [(x2, m2), (x3, m3a)il
= [(x1, m1), ([x2, x3], w(x2, x3))]
= {[x1, [x2, 3]}, (%1, [x2, 231))
= ([x1, [x2, X311, (@ (x1, [x2, X3]) + x100(x2, X3))/2)

= ({x5, [x2, x3]], (=2 (e, a2 + @) ([x2, X3, x0) + 10 (2, x3)}/2).  (2.13)
Hence the left-hand side of the Jacobi identity (2.3) is equal to zero

[CGxry 1), [{x2, m2), (xs, m3)]] + 8 (e, e + @3)[(xz, i), {(xs, m3), (xpam)]]

+8 (a1 + @, az)l(x3, m3), [(x1, my), (x2, m2)])

= (Dx1, [xz, x33] + 9, 000 + @)z, [as, 21 J] + Do + @2, @3)[x3, [x1, 2],
(x10(x2, x3) + Hon, 22 + azhxaw(xs, x1) + Foy + o, esdxsw(xy, x2)
—?(ay. @z + ez ([x, x3], x1)
=y, o + 3o, o1 + @) ([, x1], x2)
— e + aa, 3} (03, @y + a2 ([x1, x2), X3))/2)

= (0, dw(x;, x2, x3}/2)

=0. {2.14)
Therefore, the Jacobi identity is satisfied. I}
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Set

R ={xeL|wk y)=0franyyeL} (2.15)

R ={xel|w(y.x)=0foranyyel} (2.16)

In general, R, # RL. If Rl and R, are I-graded, ther R}, = R.. We call w I-admissible
if Rl and R! are T'-graded. We assume now that  is I'-admissible and for any « € M,
{Ly, u) [(H £ @ for at most one o € I". Set

No=1{ue M| (Lo,w)[ |H 0} N=) N 2.17)

oel

Then A is I'-graded. Furthermore, we define {-, -} on A/ by
{my, ma} = @(x, x) for (x1, m), (x2, ma) € M. (2.18)

This is a well defined operation since if (x,m), (x,m") € H, then x — x' € Rl = R:,.
Moreover, (M, T, 8, {-, -}) forms a coloured Lie superalgebra. We call @ a super symplectic
structure on (L, M). The operation {., -} defined in (2.18) is called the Poisson super-
bracket associated with this structure,

Let §2 be 2 subspace of ¢! (L, M) such that dM C 2. Suppose that H: @ — Lis 2
linear map. We call # I'-admissible if

HQ) =D H ). where H(Q) = H(Q)[ | La. (2.19)

ol

Moreover, H is called super skew-symmetric if
§1(HEy) = — (o, a2)b2(HE) where HE; € (H(£2)),,. (2.20)

With a super skew-symmetric I'-admissible linear map H : & — L, we connect a 2-form
wy defined on Im H by

wy(HE, HE) = 5(HE) for &, 42 € Q. (2.21)

Definition 2.3.  'We say that a super skew-symmetric ["-admissible linear map H : 2 — L
is Hamiltonian if

(a) the subspace Im H of L is a subaigebra;

{(b) the form wy; is C-admissible and dewy = 0 on H ().

Let H be a Hamiltonian operator. Moreover, we suppose that H(dM) is [-graded.
Then the space M defined in (2.9) becomes

H = {(Hdm,m) | m € M}. (2.22)
Furthermore, we define an operation {-,-}x on M by

{my, maly =dma(Hdm,) = (Hdm )(m2) formy,mpeM.  (2.23)
Then (M, T, %, {-, -}) forms a coloured Lie superalgebra, where

M= @Ma My={meM| Hdm € H(Q),}. (2.24)

wel

The map Hd : M — L is Lie superalgebra homomorphism from M to L.
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Remark 2.4. Let M be a supermanifold defined in chapter 2 of {D]. Let F(M) be the
set of scalar fields (analogues of differentiable functions of a manifold). Note that F (M)
forms a super-commutative algebra (cf [D]). The set X' (M) of contravariant vector fields
of M forms a Lie superalgebra, and 7(M) is module of A (A1) (cf [D]). A Hamiltonian
operator associated with (X(M), F(M)} provides a super-Lie-Poisson structure over M,
We would like to present a detailed study of this in our future work.

3. Super formal variational calculus

In this section, we shall present a super version of the formal variational calculus introduced
by Gel'fand and Dikii [GDi1-2]. Our idea follows the observation that the formal variational
calculus can be written in terms of the well known free bosonic fields in physics. We want
to establish an analogous theory associated with the well known free fermionic fields in

physﬁzf.é‘ be a vector space with 2 non-degenerate symmetric bilinear form {-, -). Set

S =TI @S | 3.1)
where ¢ is an indeterminant. Denote

Ay =1"®h forheS,leZ+1. (3.2)
We extend (-, ) to S by

(h(m), k' (1)) = Spynolh, B’ forh, W' € H; mne Z+ 1. (3.3)
Let Ag be the free algebra generated by S and let 7 be the ideal of Ag generated by

{uv + vu — u, v) |, ve 8} (3.4)
Then we have a Clifford algebra

V =Ag/J. (3.5)
Set

N’:{ZGZ+%]I>0} S ={h() | 0 < H e N'). (3.6)

We denote by V* the subalgebra generated by S:. Then V* are the exterior algebras
generated by Sz. Moreover

V=VV* 3.7}
Let Fup be 2 one-dimensional V¥ -module such that

xupp=0  forx e (3.8)
We form an induced module

U=V @y+ Fuy. 3G9
By (3.7),

u=Ev- as vector spaces. (3.10)

We identify y ® vo with y for y € V™. In this way, we can view the elements of £‘+ as
‘super-derivations’ of the exterior algebra V=, Set

Up = spanfhi(—D) - - hau(~tn) |0 < k € 2,0 < I; € N} (3.11)
Lﬁ = span{h[(—ll) o -h2k+1(—lzk+|) ] 0 £ ke Z, 0« Ij [ N’} (3.12)
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Then Z{(= V ~) is a Zy-graded algebra, where Z; = Z/(2) and we use the notion Z; = {0, 1}
when the context is clear. In fact

xy = (—1)"yx forx el;, y e lU. (3.13)

Let {s; | { € I} be an orthnormal basis of &, where [ is an index set. For i € Z,, we

set
L,'.;.] = {ZZH_;JS_;U) | ujr € L(;} (314)
Jer leN
Note that for 8 € L,, u € 4;, v € U,

duv) = d(wv + (—DYud(v). (3.15)
Thus L = Lo @ L; is a set of super-derivations on i{. For 8 = }:je, deN u}',s,-(l) €L,
8= 2 jer 2uerv U581} € Liy, we define

(B8] = Y Y (@b sp@wd) — (—1"2a2 sp(g¥u} N)sj(U) € Ligsy. (3.16)
Jipell geNt
It can be proved that acting on I{
[31, 82) = 3182 — (—1)"23,0;. (3.17)
Define ¢ : Zo x Zp — F* by ¢, j) = (=1)Y. Then (L, Zy, ¥, [-,-]) forms a Lie
superalgebra.
Set
D=3 Y (1+%)s(-1- s e Lo. (3.18)
jel 1ew
A direct verification shows that
D(h{~1-8)=0+Dr{-I-%) [D.e(+5)]=~in(1-1) (3.19)

for h € 8,1 € N’ (cf [FFR, T, X2]).

Remark 3.1.

(a) The operator D is an analogue of d/dx in the formal varational calculus [GDil-2].

(b} We can view U as a Fock space of the following free fermionic fields:

@ =y 5(m+Hz"" jer (3.20)
meZ

which can be viewed as ‘operator valued functions’ on I/ (cf [FFR, T, X1], for example).
In this way, our operator D coincides with the Virasoro operator L(—1) (cf [FFR, T, X1],
for example).

Lemma 3.2. Ford =3 ;3 e #05,(0) € L, [3, D] = 0 if and only if

Dn
Ujnid = E(uf'%) 0LneZ (3.21)
Proof. Note that
[0, D1=Y . Y, (D 1) — (4 Dt i sy + 3. (3.22)
Jei 0<nek,
Thus [8, D] = 0 is equivalent to
D(tj,144) = (4 it g1t (3.23)

Then (3.21) follows by induction on n. O
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Set
L=LitLcu o=

Forany u ={u; |i € I'l € £, we let

).

D
o = Z Z F(uj)s_,-(n + %) € L.

fef OgneZ °°

Then [3z, D] = 0.
Fori={u}e L, 0= {Ui} € JCJ‘,

= Y 3 [2 g (

n.gel 0gm nek

(=1 27 ¢ (
m! F

D"(vq)>

n!

o (Z], 4

Dt gD
= 2 H(T?p)“sp (m + %) (vg)

pgel 0m nel

mn
_(_1)(!'+I)U+1)2.;z(:)_p)sp (m -} %) (uq))sq (n -+ %)

where

- D" (up)

i={% ¥ (Z4 sy
pel 0smel )

_(__1)(""'”(1'“)2}%5_0 (m + %) (uq))

Thus if we define

[, 8] =w

qEIl.

then (£, Zy, ¥, [+, -]) forms a Lie superalgebra.
Next we define variational operators on 4:

a=d o (m+

m!

m=0

Lemma 3.4. Forany u € US_,

S} =0 = u = D)

§=1{5iell

for some v € /.

1

-

2

)

1691

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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Proof.  Set

5= {S;‘ —%)} Do=08; = ZZS‘,‘ (—m - %)Sj (m -+ %) € Lp. (3.31)

ief m=0

For any hy(=I1) - hp(—1,) € U, we have
Do(h (—11) - - hp(—1p)) = phi(—D)) - - - hp(=1p). (3.32)
Thus DO(LI’S;'_) =US_ and Dglu§ is a linear isomorphism. If S(u) = 0, then

() = Z( (ss(m+Lw)=0 fori € I. (3.33)
m=0
Therefore
5 (-D s ) @ =3 (-5 DT (5, (m + H w)

me=]

= (S (-p 2" (f<m+%)<u>))—sf(-l—-;ossuﬁ)(u)

o -D m—1
+3 (-1-%)1:(%:1)! (5 (m + 1+ 1) @)

_23" (~m —3) s (m+ 3) (@) + D(w) for some w € Y

i

(3.34)

where the last step follows by induction and the fact that 5; {m + £) (u) = 0 for sufficiently
large m. Thus

Dy(u) = D(w). (3.35)
By (3.19) and (3.32)
[Dg, D] = 0. (3.36)
Hence n = D((Dolug y-1(w)} € D). Conversely, if u = D(v),
5(D(v)) = Z EDP (¢ (m + 1) D)
m=0
&, (=DymH!
==L (Y )
o~ (=D)"
+;m(&‘ (m— 1 +-§) (U))
=0, (3.37)
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Now we et
U =u/pu). (3.38)
We define an action of £ on i by
a(w) = 8;(w) -+ D)

=y D (m+ 1) (w) + DO

= m
= Z u;id(w) + DY)
ief
=3 (udi )™ (3.39)
iel
This is well defined since [z, D] = 0. Thus {4 forms an £-module. Furthermore, we set
Q = {& = (&) e U’ | only finite number of & 5 0. (3.40)
For any £ € Q, i € £. we define
B =Y (wk) (3.41)
iel
Then 2 C ¢! (£, I). Note that by (3.39)
d() = d(w) € Q for o e U (3.42)

where (3.30) implies that the map § : i — © is well defined. Hence d(Z{) € .

4, Hamiltonian operators in super formal variational calcolus

In this section, we study Hamiltonian operators in our super formal variational calculus.
In particular, we give a super version of Schouten—Nijenhuis bracket, whose nullity is the
condition for certain matrix differential operators to be Hamiltonian.

Note that as sets, 2 C £. We let

Q=L for i € Zy. (4.1)
Suppose that H : £ — £ is a linear map as follows: for £ € €, i € Z,
- . . l’l(f,p.q) . .
(HE), = Y H! £, whete H) = Y ai D' withd, ,clh, (€Zs. (42)
gel =0

Such an H is called a matrix differential operator of type . Moreover, H(52) is a Z-graded
subspace. Furthermore, the super skew-symmetry is equivalent to

n{0,p.q) o n{0.q.p) o , » L
— +
:Zz; -DYaS,, = (-1 lz.; al ,,D g, = (=Fal . (4.3)

Let H : 2 — L be a super skew-symmetric matrix differential operator. We want to
find the condition for H to be a Hamiltonian operator. For & € Q;, we define a linear map
(Dy&): L— L by

- - _ - : b
(Duf)@) = (DyYi  where Dubpg =) 3 sq(m+3) (@ D' E)—

ref 0 meZ

(4.4)
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for el Nowforée Qe §2;, we have

o
e (Hn)g = Z D Ous(ag, ,D'ne)

fel] I=0
3 i \nl 2 o
= ZZ aHE(a;.t,z)D et Z Z(_l)e(:-}-:)a;’t'!aﬁg (Dl’?t)
tef 1=0 el 1=0

Il

2. D"™(HE)
S 2 (4 4) (@l D
pIEl L m=0

m -
+2 2 (=1*ag Doz (ns)

tef I=0

o0 . . . D™(HE
— Z Z (_l)(t+1+EJ{L+J)Sp (m -+ ]5) (aé.:.l)D!m_'__fn!E)P

prel lm=0

o

H=DH Y N 2t Doy ().

rel I=0
Thus

3ps(HY = (=)D (DL R HE) + (1) H oy (7).

Furthermore, for § € Q,,.i = 1.2, 3,
(HEwy{HEr, HEs) = 83, [E(HE))

= (= )WURD G BYHE) + B0y, HE)

= — (~HGRUERDTH G (Hay: &) + wp (g, HE, HE)
and
oy ((H§), HE), HE)

= wy By, HE, HE) — (=) WEDE (9, HE)

= wp(dug, HEr HE) — (1) M E(Dabi N HE))

—(= )R (H B, 6

(4.5)

(4.6)

47

(4.8)

where we have extended the definition of wy to £ x H{). Therefore, by (2.7) and (4.7),

(4.8), the equation dwy (HE,, HE, H £)=0is equivalent to
(~D/ E(DrE)HE) + (- 1)V BE (Dré)HE)
+ (=1 AR (Dy &) HE ) = 0.

(4.9)

Theorem 4.1. A matrix differential operator H of the form (4.2) is a Hamiltonian operator

if and only if equations (4.3} and (4.9) hold.
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Progf. By the above argument, we only need to prove that {4.3) and (4.9) imply that H ()
is a subalgebra of £. Again we let & € £2;,{ = 1,2, 3. Note that

(HE Yop (HE, HE) = (HENE(HE)]
= (1)U (G e EYHE) + E5(Byg, HE)
“s (- 1)(1‘:+L)(jz+¢+1)(aﬂglég)(ng) +(~ i Fi+ 1} +‘)«§3[(DH§2) H;;'-l 1
+ (=) (Hag &)
= (=1)Urne g EYHE) + (- 1)t DEG (DL E) HE)
—(-1 )i1 +£+Uz+j:)(!3+1)(aﬂgléz) (HEB)- (4.10)
On the other hand
(HEwg(HE, HE) = ()@ (HE oy (HE, HE)
=(~1 )(.fz+£)(ja+t)+ 14 (n+e} et 1D (aHEI gz)(H’,;;) + (- 1)(f2+1)(j3+1)+1+(j1 +e+ 1) (34}
XE[(DuE) HE (] 4 (—DUrtaUtotiveet it i)t g B3Y(HE)

= — (VUG EY(HE) A (— ) DURTE (D, B HE)]

(= 1) I+OUtD (e B (HE). (4.11)
Thus
(U DRRE (D LENHE ] = (— YU DGR EID b HE) (4.12)
or equivalently
E(DyE)HE ] = (- Yttt ot t A g (D, B HE) ). (4.13)
Furthermore

53[('“‘ 1)(j|+:+1}(fz+t) (Duéz)(HED — (- I)U’ +)(at+ DU -H)(DHEI )(ng)]
= (~DUHHDURE (DB (HE)] - (— 15 1(Drd)(HE)]
OB (kRO RT R E L (DB (HED] — (— 1) EI(DHE ) (HED)
B (UL (Dy ) HES]

= — (=)UTIERE(H(DE)E) (4.14)
where

I —Dy"*
(OubrEl= Y Y SoX (s (m+4) @)D G6a) @15)

r,qel 0l meZ

and & = {£&.4 | g € I}. Since £ is arbitary, we have
(—1)(-’-""""”(-"2“)(1)33;-'2)(!:{&_'1) _ (_I)Uz +o(ate)F(jare 1A +‘)(DH~§1)(H§2)

= — (-YUMERH(DYEY &I (4.16)
Finally, by equations (3.27), (3.28), (4.6) and (4.16)
[HE, HE] = HI(-1Mopg B — (100005, 4

—(~DI I H[(Dy &) ] (4.17)

Thus H (L) is a subalgebra of L. |
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Let H) and H, be maixix differential operators of the same type ¢. If aH; + bH; is
Hamiltonian for any a,b € F, then we call (H,, Hy) a Hamiltonian pair. For any two
matrix differential ooperators Hj and H, we define the Schouten—Nijenhuis super-bracket
[Hy, Hyl: @ = U by

[H, H(E, &, B3) = (— 1N EB((Du 51 Haka) + (-1 E (D, &1) Hi E2)
(= 1) EEDE ((Dy B HoEs) + (= 1)2HITIBE (D BYHE)
F(=1)TBH N RIE (D E3) Hpk ) + (= 1)BHUEHIERE, (DY B ELE)
(4.18)

for E,, Ez, §3 € §2. When the characteristic of I is not 2, (4.9) is equivalent to [H, H] =
In general, we have the following corollary.

Corollary 4.2.  Suppose that the characteristic of F is not 2. Matrix differential operators
Hy and H; of the same type forms a Hamiltonian pair if and only if they satisfy (4.3) and

[H, H]=0 [Hy, H3]1 =0 [H), H] = 0. (4.19)

5. Examples

In this section, we shall give some examples of Hamiltonian superoperators, using the
notation of section 4,

Example 1. Let
F(D) = Za;Du where g; € F. {5.1)

We define H by
H(E) = (1Y F(D)E) for £ € ;. (3.2

Then A satisfies (4.3) and (4.9). Thus & is a Hamiltonian superoperator of type 0. The
corresponding Poisson structure on U is

0, v) = (=1 G0IFDYEn)] = (1) 3 _UFDYGuNE  (5.3)

pel

where u € I;, v € [. Such a Poisson structure could be useful in proving the integrability
of certain noniiner ‘super-systems’. Note that, in the formal variational caiculus of Gel’fand
and Dikii, only odd polymials of d/dx are Hamiltonian. In our theory, only even
polynomials of D are Hamiltonian. This shows an essential difference between their theory
and ours.

Example 2. We use the notation of (4. 2) Let

=H, =Y al s~ a el (54)
led

Then H is a matrix operator of type 1. The super skew-symmetry (4.3) is equivalent to
a, =-a for p,g,l € I. (5.5)
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Moreover, for & € Q;,i =1,2,3,

B(DxENHE) = Y d, a8 esm(—3)b2bs 00"

pag.timel

=0 3 (@ alse(~ D gk )" (5.6)

p.g.tlmel

E(DuiHEY = (1)1 3" (@) alsm(~$agkscdip]”

p.q.tlmerl

= (_I)J'z+Uz+13)(.i:+1 1 Z Ia;_gafpsm (_5)51,452,:53.])]“. (5.7)
pg.tlmel

E((Du&HE)Y = (=1 3" [ alsn(~ D061k p)

p.g.tlmel
= (_ 1)j3+(jl+j2)ff3+l)+l Z {Gf,paqum(— %)fl,qu.:é's,p]n'- (5‘8)
p.g.tlmel
Thus equation (4.9) is equivalent to
Z(af,'qa,",’, + aé‘,a}f‘p + af.pa{f’q) =0 for any m, p,q,t € I. (5.9)
tel
We define an operation [-, -] on & by
[sp.5,0 = abse  pgel (5.10)

lel

Then equations (5.5) and ¢5.9) show that an operator H of the form (5.4) is Hamiltonian if
and only if (5, [-, -]} is a Lie algebra.

Remark 5.1. The operator (5.4) is an analogue of the one in equation (6.1) of [GDo]. In
fact, we have Hamiltonian superoperators analogous to the other examples in section 6
of [GDo]. Suppose that a matrix differential operator H in the formal variational
calcufus [GDo] is given by

n{p.q.i) o d i
Hpg= 3 apgi(’D{ p.gel (5.11)
i=0

where a,,,q,,.({uﬁ“}) are linear functions in {uflJ }. We define an operator H’ in our super
formal variational calculus by

n{p.g,i)
Hyg= ) tpqlllls(-1=PHD*  pgel (5.12)
i=0

Then H' is a matrix differential operator of type 1. By an argument analogous to the above
example, we can prove that H' is Hamiltonian if and only if A is Hamiltonian.
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