
Hamiltonian superoperators

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 1681

(http://iopscience.iop.org/0305-4470/28/6/021)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 01:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 28 (1995) 1681-1698. Printed in the UK 

Hamiltonian superoperators 

Xiaoping Xu 
Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water 
Bay, Kowloon, Hong Kongt 

Received 3 October 1994 

Abstract We present a theory of Hamiltonian superopentors associated with a Lie 
superalgebra and its modules. By using the free fermionic fields from physics, we establish 
a super version of the formal variational calculus introduced by Gel’fand and Dikii. Moreover, 
we prove that a super skew-symmetric matrix differential operator ia our super formal variational 
calculus is a Hamiltonian operator if and only if its Schouten-Nijenhuis super-bracket is zero, 
when the charaneristic of the base field is not two. Some interesting examples of Hamiltonian 
superoperators are also given. 

1. Introduction 

The ‘formalization method’ has been proved to be very powerful in many mathematical 
fields. Formal variational calculus was introduced by Gel’fand and Dikii [GDil-21 in 
studying Hamiltonian systems related to certain nonlinear partial differential equations, such 
as the KdV equations. Invoking the variational derivatives, they found certain interesting 
Poisson structures. Moreover, Gel’fand and Dorfman [GDo] found more connections 
between Hamiltonian operators and certain algebraic structures. Balinskii and Novikov [BN] 
studied similar Poisson structures from another point of view. One of the algebraic structures 
appeared in [GDo] and [BN], which was called a ‘Novikov algebra’ by Osborn, was proved 
in [OIL31 to be closely related to rank-one Witt Lie algebras under certain conditions. One 
of the other structures in [GDo] was proved [X2] by this author to be equivalent to an 
associative algebra with a derivation under the unitary condition. 

We observe that the formal variational calculus introduced by Gel’fand and Dikii [GDil- 
21 can be rewritten in terms of free bosonic fields in physics. From an algebraic point 
of view, there should exist a formal variational calculus associated with free fermionic 
fields in physics. Our main purpose in this paper is to introduce a theory of Hamiltonian 
superoperators analogous to that given in [GDil-2,GDo]. In fact, the calculus of 
Grassmannian variables exists in quantum many-particle systems (cf [NO], for example). 
Super-manifolds have been studied both by mathematicians and physicists for many years. 
In this sense, our study on Hamiltonian superoperators is natural. We also believe that the 
results in this paper could be useful for ‘super-integrable systems’ and ‘super-symplectic 
geometry.’ 

Throughout this paper, we denote by F a field and denote by Z the ring of integers. All 
the vector spaces are over IF. 

t Research supported by the Direct Alocation Grant 4083 DAG93/94 from HKUST. 
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Let L be a Lie algebra and let M be an L-module. For 0 < q E Z, a q-form 
w : Lq = L x . . x L -+ M is a skew-symmetric multilinear map. We denote the set of q- 
forms by cq(L, M). We take co(L, M)  = M ,  The differential d : cS(L, M )  -+ c9+I (L ,  M) 
is defined by 

+ C ( - ~ ) ' + j w ( [ a i , a j ] , a l .  ... ? i i ,  ..., ; j ,  ..., aqtl) (1.1) 
i<j 

for a, E L, where '&' means that ai is omitted. A q-form w is called closed if d w  = 0. 

operator (map) satisfying the skew-symmetry 
Let R be a subspace of c'(L.  M) satisfying d M  c R. Let H : R -+ L be a linear 

C;I(Hh) = -h(HFt) for C;I?.$Z E Q. ( 1.2) 

W H ( a l , a d = h ( a l )  f o r a l , a z =  H ~ E  H ( W .  (1.3) 

Moreover, we define OH E c2(H(S2), M) by 

Note that (1.3) is well defined because of (l,2), The operator H is  called Hamilfonian if 
H(R) forms a subalgebra of L and dwH = 0. 

In the formal variational calculus introduced by Gel'fand and Dikii [GDil-21, one starts 
with the algebra A of polynomials of symbols [U!)  [ 0 < i E Z, 1 E I), where I is an index 
set. 'Differentiation with respect to x' is defined by the operator 

The partial variational derivatives 6/6ul : A + A are defined by 

I E I. 6 -  l a  -=E(-$) 6 4  r=o aul" 

6 d  
- o - = O ,  
6i dx 

Set 

= A / ( d / d x ( A ) ) .  (1.7) 

The elements of are called integrals. Note that 

[(du/dx)u]" = - [u(du/dx)]-  for U ,  U E A .  (1.8) 
Now let 

L = [ a  E Der A I [ a ,  d /dx l  = 0). 

a i  = (au)" 

(1.9) 

(1.10) 

Then L is a Lie subalgebra of Der A. We define the action of L on d by 

for a E L ,  U E A .  

The space d becomes an L-module. Some Hamiltonian operators associated with ( L ,  M )  
have been shown to be connected with certain very interesting nonlinear partial differential 
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equations (cf [GDi1-2,GDo]). We observe that A can be viewed as a Fock space of the 
free bosonic fields 

which are viewed as 'operator-valued functions' (cf mM], for example). In this way, the 
operator dldx coincides with the Virasoro operator L(-1) (cf [FLM], for example). We 
shall study in this paper the Hamiltonian operators associated with the free fermionic fields. 
The paper is organized as follows. 

In section 2, we introduce a general theory of Hamiltonian superoperators associated 
with a coloured Lie superalgebra and its modules. The super formal variational calculus is 
introduced in section 3. In section 4, we find the conditions of certain matrix differential 
operators to be Hamiltonian operators. Finally in section 5, we present some examples of 
Hamiltonian superoperators. 

2. Closed 2-forms 

In this section, we shall define 'closed q-forms' for a coloured Lie superalgebra and its 
modules. With a fixed closed 2-form. we connect a new Lie algebraic structure. Moreover, 
we set up the basic machinery for Hamiltonian superoperators. 

Let r be an abelian group. Let e(. , .) : F' x r -+ I F x  = IF \ [O) be a map satisfying 

A coloured Lie superalgebra ( L ,  r. 0, [. , .I) is a r-graded algebra L = eaGr L, with the 
operation [. , .I satisfying the super skew-symmetry 

(2.2) 
and the Jacobi identity 

~ ~ l , ~ ~ z . ~ 3 l l + ~ ~ ~ ~ B + Y ~ ~ ~ 2 . ~ ~ 3 ~ X I l I + B ~ ~ + B , Y ~ ~ X 3 , ~ X I , X Z I I  = o  (2.3) 
for a, P ,  y E r; X I  E L,,  x2 E Lg, x3 E L,. A representation of ( L ,  r, B, [. , .I) is a map 
p : L + EndBM for some vector space M over IF such that 

We simply denote 

and call M an L-module. 

which 

for x, E L.xi E La, x i + ]  E Lg. We denote by cq(L, M )  the set of q-forms. Moreover, we 
define a differential d : cq(L,  M )  + cq+'(L, M )  by 

~ U ( X I , X Z  ,..., + + I )  = ~ ( - l ) ' + ' B ( ~ r i  + . . . + a i - i . c u i ) x i w ( x i  ,.... it ,..., x q + l )  

e@ + A  Y) = W. Y ) B ( B ,  Y) $(a, B )  = B ( B , ~ ) - '  for a, B .  Y E r. (2.1) 

[ X I .  x 2 1  = -S(a, B ) [ X 2 .  X I 1  

P ( [ X l , X Z I )  = P ( X I ) P ( X d  - w , P ) P ( x z ) P ( x l )  for X I  E L,,xz E Lg. (2.4) 

(2.5) x u  = p ( x ) u  for x E L ,  U E M 

A q-form of L with values in M is a multi-linear map w : Lq = L x . . . x L + M for 

W ( X I .  X Z .  . . . , x q )  = -0(01, B ) o ( x I . .  . . , x i - 1 ,  X ~ + I  , x i .  x ~ + z .  . . . , x q )  (2.6) 

9+l 

i=l 

+C(- l ) '+ir9(a1 +...+ o l i - I , L Y i ) O ( a ]  + . . . + & + . . . + a j -  ] , e j )  

X W ( [ X i , X j I , X I , .  . . , i i ,  . . . , i j ,  . . . , xq+d 

i c j  

(2.7) 
f o r o  E cq (L ,M) ,xc  E L , , I  = 1 , .  . . , q  + 1. A q-form w is called closed if dw = O .  
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Proposition 2.1. 

Prooj! 

The differential d satisfies dZ = 0. 

For w E d ( L ,  M), x ,  e La, ,  . . . , x ~ + ~  E L,,, we have 

d2w(x1,.  3 I ,  X q + d  

q+2 

iCl 
= ~ ( - l ~ + 1 L 9 ( o 1 1  +...+ cu;-l,a;)xido(xl, ..., 2; ,..., xq+z) 
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x?9(orr + , . +orJ-l,iYj)B(LYl + ., . + Gj + . I .  +iY,-r. or,) 

xB(LY1 +."+or,-l,oru,)8(orl + " ' + ~ ~ + + " + + , ~ ~ , n , ) # ( o r j  +a,,cfs) 

Xo([ x ~ , ~ ,  l , [ ~ j , ~ 1 1  ,XI,,,.,I~,...,~~,....II,...,I~,...,X~+Z) (2.8) 

which is equal to zero because of the following: the sum of the first two summations and 
the sixth is zero by (2.2); the sum of the third summation and the seventh is zero; the sum of 
the fourth summation and the eighth is zero; the sum of the fifth summation and the nineth 
is zero; the sum of the tenth to twelfth is zero by (2.3); the sum of the thirteenth summation 
and fourteenth, the sum of the fifteenth and sixteenth and the sum of the seventeenth and 
eighteenth are zero by (2.2). 

Let o E c2(L ,  M). We define 

= ( ( x , m )  E L,  x M I w ( y , x )  = ym for y E Lt 'H = EX. c L x M .  (2.9) 
.Er 



= 0. 

Therefore, the Jacobi identity is satisfied. 

(2.14) 

0 
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Set 

'R', = ( x  E L I w ( x .  y )  = 0 for any y E L ]  (2.15) 

(2.16) 

In general, 77.; # 'R;. If 'R; and 77.; are r-graded, then 77.; = 77.;. We call U P-admissible 
if R', and 77,; are r-graded. We assume now that o is r-admissible and for any U E M, 
( L a ,  U )  n 7t # 0 for at most one 01 E r. Set 

N, = E M I ( L , , ~ ) ~ X  N = EN,. (2.17) 

'RL = { x  E L I w ( y ,  x )  = 0 for any y E L ] .  

Then N is r-graded. Furthermore, we define I . ,  .) on N by 
( m t , m z } = o ( x ~ , x ~ )  for ( x t , m i ) , ( x z , m i ) E X .  (2.18) 

This is a well defined operation since if ( x ,  m),  ( x ,  m3 E X, then x - x' E 77: = 77.;. 
Moreover, (N, r, 8, {. , .]) forms a coloured Lie superalgebra. We call o a super symplectic 
structure on ( L ,  M ) .  The operation {. , .) defined in (2.18) is called the Poisson super- 
bracket associated wiih ihis structure. 

Let S2 be a subspace of c l ( L ,  M) such that dM c S2. Suppose that H : Q + L is a 
linear map. We call H r-admissible if 

H ( Q )  = @ H(Q). where H ( Q ) ,  = H(Q) n L , .  (2.19) 

Moreover, H is called super skew-symmetric if 

ti(H5z) = -8@1,01z)h(H&) where Het E (H(Q))e , .  (2.20) 

With a super skew-symmetric r-admissible linear map H : S2 -+ L, we connect a 2-form 
W H  defined on Im H by 

W H ( H ~ I ,  H t z )  = tz(H51) for 5 1 ~ 5 ~  E Q. (2.21) 

Definition 2.3. 
is Hamiltonian if 

We say that a super skew-symmetric r-admissible linear map H : Q --z L 

(a) the subspace Im H of L is a subalgebra; 
(b) the form wH is r-admissible and dwH I 0 on H ( Q ) .  

Let H be a Hamiltonian operator. Moreover, we suppose that H ( d M )  is r-graded. 
Then the space 1-1 defined in (2.9) becomes 

X = {(Hdm, m) I m E M}.  (2.22) 

Furthermore, we define an operation {. , .JH on M by 

I m 1 , m z I ~  = d m z ( H d m ~ )  = (Hdml) (mz)  f o r m 1 , m z e M .  (2.23) 

Then (M,  r, 8, {. , .)) forms a coloured Lie superalgebra, where 

M = @Ma 
aEr 

Ma = (m E M I Hdm E H(S2),] 

The map H d  : M --f L is Lie superalgebra homomorphism from M to L. 

(2.24) 
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Remark 2.4. Let M be a supermanifold defined in chapter 2 of ID]. Let 3 ( M )  be the 
set of scalar fields (analogues of differentiable functions of a manifold). Note that F((M) 
forms a super-commutative algebra (cf [D]). The set X ( M )  of contravariant vector fields 
of M forms a Lie superalgebra, and 3 ( M )  is module of X ( M )  (cf [D]). A Hamiltonian 
operator associated with ( X ( M ) ,  F ( M ) )  provides a super-Lie-oisson smcture over M .  
We would like to present a detailed study of this in our future work. 

3. Super formal variational ealeulw 

In this section, we shall present a super version of the formal variational calculus introduced 
by Gel'fand and Dikii [GDil-21. Our idea follows the observation that the formal variational 
calculus can be written in terms of the well known free bosonic fields in physics. We want 
to establish an analogous theory associated with the well known free fermionic fields in 
physics. 

Let S be a vector space with a non-degenerate symmetric bilinear form (. , .). Set 

3 = Fltlti @p s (3.1) 
where t is an indeterminant. Denote 

h(n) = f" @ h for h E S,l E Z +  4. (3.2) 

We extend (. , .) to by 

(h(m) ,h ' (n) )  =6,+,,o(h,h') forh ,h 'E  H; m , n  E Z +  4. (3.3) 

(uv + vu - ( U ,  U) I U ,  U E '9). 
Let A S  be the free algebra generated by 3 and let J be the ideal of A s  generated by 

(3.4) 
Then we have a Clifford algebra 

V = A s f J .  

Set 
(3.5) 

N' = (1 E z + 4 1 1 > 0) 3* = (h(1) 1 0 < f l  E N'). (3.6) 

We denote by V* the subalgebra generated by &. Then V* are the exterior algebras 
generated by &. Moreover 

v = v-v+. (3.7) 
Let FUO be a one-dimensional V+-module such that 

xu0 = o for x E S+.  
We form an induced module 

U = v @"+ Fvo. (3.9) 
BY (3.7)- 

U V- as vector spaces. (3.10) 

We identify y @ uo with y for y E V - .  In this way, we can view the elements of st as 
'super-derivations' of the exterior algebra V-.  Set 

Uo = span(hi(-11). . .hu(-/~) I O  6 k E Z,O < l i  EN'} (3.11) 

UI =~pan(h1(-11)...hu+l(-C+l) I O < k € Z , O < l i  EN']. (3.12) 
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ThenU(= V-) is a &-graded algebra, where iZz = Z/(2) and we use the notion 
when the context is clear. In fact 

= (0, I )  

x y  = ( - l ) i j y x  for x E U ~ ,  y E U,. (3.13) 
Let (si I i E 1)  be an orthnormal basis of S, where I is an index set. For i E Z2, we 

set 

(3.14) 

Note that for a E L,, U E U), U E U ,  
(3.15) 

Thus L = LO 8 L I  is a set of super-derivations on U. For a, = cj,, u,!pj(l) E Li, ,  
az = E,,, ELEN, uj,,sj(I) E Liz, we define 

[ a l ,  a2i = C c ~ ; , ~ s ~ c m ; , , )  - ( - I ) ~ ~ ~ ~ u ~ , ~ ~ ~ ( ~ ) ( u ~ , , ) ) ~ ~ ( I )  E L~,+;,. (3.16) 

It can be proved that acting on U 

a(uu) = ~ ( u ) u  + (-i)ijua(tJ). 

j , p d r . q c N '  

[al, a*] = ala2 - (-i)ei%a,. (3.17) 
Define I9 : Zz x 4 -+ I' by I9(4 j) = (-1)lj. Then (L, &,19. [., .]) forms a Lie 
superalgebra. 

Set 

D = cc ( I  + +) s,(-I - l)Sj(I) E Lo. 
jer  IEN' 

(3.18) 

A direct verification shows that 
D (h (4 - 4)) = ( I  + l )h  ( - I  - $) 
for h E S, I E N' (cf [FFR, T, XZl). 

Remark 3.1. 

[ D ,  h (I + f)] = -Ih ( I  - f) (3.19) 

(a) The operator D is an analogue of d/dx in the formal varational calculus [GDiI-2]. 
(b) We can view U as a Fock space of the following free fermionic fields: 

S j ( Z )  = s, (m + f) Z-' j e i  (3.20) 

which can be viewed as 'operator valued functions' on U (cf [FFR,T,Xl], for example). 
In this way, our operator D coincides with the Xrasoro operator L(-1) (cf [FFR,T,Xl], 
for example). 

Lemma 3.2. For a = E),, 

mEZ 

u,.is,(I) E L. [a, D ]  = 0 if and only if 
D" 
n! uj,++f = - ( u j , + )  0 < n E Z. (3.21) 

ProoJ Note that 

Thus [a, D ]  = 0 is equivalent to 

D(uj,.++) = (n+ 1)~~, .+~+; .  
Then (3.21) follows by induction on n. 

(3.23) 
0 
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Set 

c =c, +c* c U' c; = Wi)' 
For any U = (ui I i E I ]  E L, we let 

Then [a,. D] = 0. 
For U =  (U:] E Ci, B = {v i ]  E Lj,  

Thus if we define 

[i. I] = Iil 

then (L, E?, V ,  [. , .I) forms a Lie superalgebra. 
Next we define variational operators on U: 

Lemma 3.4. For any U E U s ,  

i(u) = 0 = D(u) for some U E U. 

1691 

(3.24) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 
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Proof: Set 

(3.31) 

For any h l ( - l~ ) .  . . hp(- lp)  E U, we have 

(-11).  .hp(- lp))  = phi ( 4 1 ) .  . .hp(- lp).  (3.32) 

Thus D o ( U k )  =Us and Dolus is a linear isomorphism. If 8(u)  = 0, then 

- - ... 
m 

= - Csi (-m - 5) si (m + f )  (U) + D ( W )  for some w E U 
m=I 

(3.34) 

where the last step follows by induction and the fact that si (m + 1) (U) = 0 for sufficiently 
large m. Thus 

Do(u) = D ( w ) .  (3.35) 

By (3.19) and (3.32) 

[Do, D ]  = 0. (3.36) 

Hence U = D((DolU~-)-'(w)) E D(U). Conversely, if U = D(u),  

(3.37) 

0 

= 0. 
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Now we jet 
6 = U/D(U).  

We define an action of 1: on G by 
i(6) = &(WO) + D(U) 

i d  

(3.38) 

(3.39) 

This is well defined since [ai, Dl = 0. Thus 6 forms an L-module. Furthermore, we set 

For any $ E Q, U' E C. we define 
0 = {g = { t i )  E U' I only finite number of & # 0). (3.40) 

G(G) = C(uiti)-. (3.41) 
i d  

Then n c c'(C,O). Note that by (3.39) 

where (3.30) implies that the map 8 : 
d ( 6 )  =$(U) E Q for 6 E U (3.42) 

+ Q is well defined. Hence d ( 0 )  E a. 

4. Hamiltonian operators in super formal variational calculus 

In this section, we study Hamiltonian operators in ow super formal variational calculus. 
In particular, we give a super version of Schouten-Nijenhuis bracket, whose nullity is the 
condition for certain matrix differential operators to be Hamiltonian. 

Note that as sets, C2 c L. We let 

n, = Q n ci for i E zz. (4.1) 

Suppose that H : f2 + C is a linear map as follows: for g E Q i ,  i E ZZ 

Such an H is called a matrix dLTerentia1 operator of 6ype 1 .  Moreover, H(Z2) is a &-graded 
subspace. Furthermore, the super skew-symmetry is equivalent to 

(4.3) 

Let H : Q + C be a super skew-symmetric matrix differential operator. We want to 
find the condition for H to be a Hamiltonian operator. For 6 E Q l ,  we define a linear map 
(Dug) : L +  L by 

(4.4) 
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for ? E  Q. Now f o r i  E Q i ,  ij E Q,, we have 

aH$(Hi))q = c c a/if(&,iD'b) 
m 

t E l  I = o  
m m 

= C C a H & . , p [ v t  + C C(- l~( i+L)a~,~ , laHF(D'v l )  

= C 2 D m ( H ' ) ~ s p  m! (m + 4) (a;,t,l)D~qt 

f E I  I=o *€I  k 0  

P J E l  1" 

+ C ~(-i)l('+L)u~,,,IDfa,5(sr) 
E l  I=O 

D m ( H 8 ) p  
m 

- - C C ( - ~ ) ( ~ + ' + " ( ' + j ) s ~  (m + i) (a: f I ) ~ ' q l  
m! . ,  

P , l € l  I"O 

m 

(4.5) 
t+i+j  I +(-l)'+LCCoq,r,l D ax&t). 

t E l  I=O 

Thus 

a,$(Hi) = ( -1)(~+l+W+j)(D H ~ ) ( H B )  - + (-iY+LffaHf(m. (4.6) 

Furthermore, for 6 E S 2 , .  i = 1.2,3, 

( H & ) @ H ( H ~ Z ,  H&) = a&(H$dI 

= (- i)(L+j1)cj2+1+i)(a,aC3)(~C2) + g3(aHi, HA) 
(4.7) = -  (- 1)0+h)O+h)tt+h h(Ha,&,&) - +%(a,!, Hh7 HCd 

and 

OJH([HCI- Hhl .  HC3) 

= uH(aHIIHgZ, H C ~ )  - ( - l ) " + h ) ( ~ + 6 ) - 3 ( ~ ~ F 2 ~ F , )  E 

= W H ( a , l , H L  H53) - (-1)"+'~3((DH81)(X~Z)) 

_ ( - 1 ) ( ~ ~ i i + l ) ( ~ + h ) ~ 3 ( ~ a  H<r . { 1 ) (4.8) 

where we have extended the definition of m~ to L x H ( Q ) .  Therefore, by (2.7) and (4.7), 
(4.8). the equation dm,(Hg~,  H i z ,  Hg3) = 0 i s  equivalent to 

(- 1)'' 53 ((DH $1) ff&) + (- 1)'""'''' th'6 ((DHf$) H&) 

+(-I ) j i+(h+d +h)Cz ((& C3) ,yil 1 = 0. (4.9) 

Theorem4.1. A matrix differential operator H of the form (4.2) is a Hamiltonian operator 
if and only if equations (4.3) and (4.9) hold. 
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Let HI and Hz be matrix differential operators of the same type 1. If aH1 + bHz is 
Hamiltonian for any a ,  b E B, then we call (HI, Hz) a Hamiltoniun pair. For any two 
matrix differential operators HI and Hz, we define the Schouten-Nijenhuis super-bracket 
[HI, Hz] : Q3 3 Li by 

[HI,  H21($1, $2, $3) = ( - l ) i ’A((DH,Et)Hz~z)  + ( - l ) ” g ~ ( ( D H I F I ) H 1 ~ ~ )  

+ ( - I  )jz+(i+i.h+h)- cr ( ( D ~ , ~ Z ) H ~ ~  + (- ~ ) j ~ + ‘ j ~ + ‘ J ~ + j ~ ) A  ((DH&)H&) 

+( - I  ) h + ( h + ~ . j ~ + h ) & ( ( ~ ~  1 3  g )&&) + (-l)jJ+(h+~J+h)$,((DH~~~)Hl$l) 

g3 E Q. When the characteristic of IF is not 2, (4.9) is equivalent to [H. H] = 0. 

(4.18) 

for 
In general, we have the following corollary. 

Corollary 4.2. Suppose that the characteristic of F is not 2. Matrix differential operators 
HI and H2 of the same type forms a Hamiltonian pair if and only if they satisfy (4.3) and 

[H1,H11=0 [Hz.H21=0 IH1,HzI=O. (4.19) 

5. Examples 

In this section, we shall give some examples of Hamiltonian superoperators, using the 
notation of section 4 .  

Example 1 .  Let 

F ( D )  = ai Dz where ai E B. 
i=o 

We define H by 

H($) = ( -1IiF(D)($)  for 8 E Qi. (5.2) 

Then X satisfies (4.3) and (4.9). Thus H is a Hamiltonian superoperator of type 0. The 
corresponding Poisson sbucture on fi is 

O H ( U .  U) = ( - l ) ’ ( d ~ ) [ F ( D ) ( d ~ ) l  = ( - ~ ) ‘ C [ ( F ( D ) ( G ~ U ) ) ( G ~ U ) I ”  (5.3) 
PE! 

where U c L&, U E 2. Such a Poisson structure could be useful in proving the integrability 
of certain nonliner ‘super-systems’. Note that, in the formal variational calculus of Gel’fand 
and Dikii, only odd polymials of d/dx are Hamiltonian. In our theory, only even 
polynomials of D are Hamiltonian. This shows an essential difference between their theory 
and ours. 

Example 2. We use the notation of (4.2). Let 

(5.4) 

Then H is a matrix operator of type 1 .  The super skew-symmetry (4.3) is equivalent to 

a’ P.l = for p .  q.  1 E I .  (5.5) 
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Moreover, for .$ E Qj,, i = I ,  2,3, 
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Thus equation (4.9) is equivalent to 

C ( a b , , a r r  + a ; p &  + a:.,arq) = o for any m ,  P, q .  t E I .  (5.9) 
I E l  

We define an operation [. , .I on S by 

[sp.sql = Ca; .9Sl  P ,  q E 1. (5.10) 

Then equations (5.5) and (5.9) show that an operator H of the form (5.4) is Hamiltonian if 
and only if (S, [. , .I) is a Lie algebra. 

Remark 5.1. The operator (5.4) is an analogue of the one in equation (6.1) of [GDol. In 
fact, we have Hamiltonian superoperators analogous to the other examples in section 6 
of [GDo]. Suppose that a matrix differential operator H in the formal variational 
calculus [GDo] is given by 

I E l  

(5.11) 

where ap ,q , j ( {ur ) ] )  are linear functions in (uj"] .  We define an operator H' in our super 
formal variational calculus by 

(5.12) 

Then H' is a matrix differential operator of type 1. By an argument analogous to the above 
example, we can prove that H' is Hamiltonian if and only if H. is Hamiltonian. 
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